INFLUENCE OF THREE TREATMENT PROTOCOLS FOR DENTAL FLUOROSIS IN THE ENAMEL SURFACE: AN IN VITRO STUDY

Rodrigo Barros Esteves Lins¹, Ana Karina Maciel de Andrade², Rosângela Marques Duarte², Sônia Saeger Meireles*²

¹Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
²Department of Restorative Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil.

ABSTRACT

Introduction: Dental fluorosis is an enamel alteration characterized with opaque stains caused by high exposures to fluoride during the dentition development. Aim: This in vitro study aimed to evaluate changes in the enamel surface of sound human teeth after three treatment protocols for dental fluorosis: microabrasion with 37% phosphoric acid and pumice, home bleaching with 10% carbamide peroxide, and a combination of these techniques. Methods: Thirty-eight specimens (5×5×2 mm) with enamel surface were obtained from 19 third molars. Thirty-six specimens were randomized into three treatment groups (n=12): MAB- microabrasion of the enamel; CP10- home bleaching; MAB+CP10- association of these techniques. Results: All treatment protocols promoted an increase in the enamel surface roughness (p<0.02). MAB and MAB+CP10 showed a significant increase in the enamel microhardness (p<0.04), compared to CP10. SEM images demonstrated a smoother surface from MAB and MAB+CP10 and an irregular pattern of enamel erosion from CP10. Conclusions: The treatment protocols for dental fluorosis tested significantly changed the enamel roughness, microhardness and micromorphology.
INTRODUCTION

Dental fluorosis is an enamel alteration caused by successive exposures to high concentrations of fluoride during the period of permanent dentition development. The severity of fluorosis varies according to the quantity of fluoride intake, time of exposure, and the stage of the amelogenesis, as well as being related to lifestyle. Clinically, fluorosis is characterized by the presence of bilateral, diffuse, white and opaque stains that run horizontally across the enamel. Another characteristic of this pathology is the presence of symmetry; homologous teeth tend to be affected.

The occurrence of severe dental fluorosis compromises the appearance and aesthetics of teeth, causing embarrassment and difficulties to smile. In addition, facial harmony plays important social and psychological roles in the individual’s quality of life and social relationships. This intrinsic condition can be treated by conservative methods, such as polishing, enamel microabrasion, dental bleaching, or the combination of these techniques. However, more invasive methods are also used, such as veneers in composite resin or porcelain, or ceramic crowns in the most severe cases.

The microabrasion technique was first presented by Croll and Cavanaugh (1986), who successfully removed opaque white stains from enamel using 18% hydrochloric acid and pumice under pressure with a wooden spatula. Mondelli et al. (1995) proposed a modified microabrasive technique, replacing the 18% hydrochloric acid from 37% phosphoric acid and pumice. This technique is an aesthetic and conservative procedure for removal a thin layer of stains and cracks or defects localized in enamel surface by the action of abrasive agents, mechanical abrasion and, the acid penetration in the organic portion of tooth enamel. Other advantages of this technique is the availability of phosphoric acid in dental offices due to its common use in adhesive procedures and the reduced risks of accidental exposure compared to hydrochloric acid.

Tooth bleaching techniques can be performed at home, where the patient uses low concentrations of carbamide (10–22%) or hydrogen peroxide (up to 14%) in custom trays or, in dental offices, where a professional can apply higher concentrations of hydrogen (15–38%) or carbamide peroxide (30–37%) in the teeth surface. Additionally, 10% carbamide peroxide is the only bleaching gel considered safe, and that has received the American Dental Association (ADA) seal of approval.

The treatment for dental fluorosis frequently associate tooth bleaching to enamel microabrasion in order to promote whiter and more uniform teeth, as well as reducing the contrast between the white stain lesions and the tooth surface around the stains. This associated technique with 10% carbamide peroxide supervised home bleaching is the choice for treating white stains caused by fluorosis, showing excellent aesthetic results through a conservative treatment. Thus, the aim of this in vitro study was to evaluate the changes in the roughness, microhardness, and micromorphology of the human enamel surface submitted to three treatment protocols for dental fluorosis: microabrasion with 37% phosphoric acid and pumice, home bleaching with 10% carbamide peroxide or the association of these techniques.

MATERIALS AND METHODS

Ethical considerations

This study was approved by the local Ethics and Research Committee of the Federal University of Paraíba, Brazil under protocol number 446/10 and Certificate of Ethics Appraisal (CAAE) number 0371.0.126.000-10.

Selection and preparation of specimens

Nineteen third molars donated by the Human Teeth Bank from Federal University of Paraíba (UFPB) were used. Teeth were examined under 40x amplification to detect cracks or defects and, those without structural defects were used in this study. Teeth were stored in 0.5% thymol solution (pH 7.0) at 4°C until beginning the experiment. Roots were sectioned at cemento-enamel junction using a double-face diamond disc (EXTEC Corp., Enfield, CT, USA) and crowns were longitudinally sectioned into two equal enamel blocks using a low-speed diamond-edge saw under refrigeration (Labcut 1010, EXTEC Corp., Enfield, CT, USA). Thirty eight enamel blocks were obtained and the dimensions of each of them (5x5x2 mm) were measured with a digital calliper (resolution 0.01mm) (500-144B, Mitutoyo Corp., Japan). The enamel blocks were embedded in acrylic resin such that the enamel surface faced upward.

The enamel surface of the specimens were ground flat using water-cooled abrasive well in a sequence of 600 and 1200- grit silicon carbide papers in order to obtain a flat surface. Polishing was finalized with medium-grain diamond paste (Diamondac I, FGM Dental Products, Joinville, SC, Brazil) associated with felt discs (Diamond, FGM Dental Products, Joinville, SC, Brazil). Specimens were stored in distilled water at 37°C until beginning the treatments.

Randomization and treatment

Thirty-six enamel blocks were randomized into three treatment groups (n= 12): enamel microabrasion (MAB); tooth bleaching with 10% carbamide peroxide (CP10) and the association of both techniques (MAB+CP10). Two
specimens were not treated and were used as a control group for scanning electron microscopy.

Specimens from MAB performed the microabrasion technique using a layer of microabrasive paste (approximately 2.0 mm) with equal parts of 37% phosphoric acid (Condac 37%, FGM Dental Products, Joinville, SC, Brazil) and ultrafine pumice (SS White LTDA; Rio de Janeiro, RJ, Brazil). A rubber cup (Microdont, KG Sorensen, Cotia, SP, Brazil) mounted on a slow-speed handpiece with a 10:1 gear reduction was used to abrade lightly the specimen surface. Paste excess was removed with sterile gauze and the specimens were rinsed for 20 s. This procedure was repeated 12 times, 10 s each, in a single treatment session. After applications, the abraded surface was polished with felt discs (Diamond, FGM Dental products, Joinville, SC, Brazil) and diamond paste (Diamond Excel, FGM Dental products, Joinville, SC, Brazil). Then, the treated specimens were rinsed, dried, and stored in artificial saliva solution at 37°C (Phosphate potassium dibasic 4.35 g/L, Phosphate potassium monobasic 3.2 g/L, 70% Sorbitol, Sodium fluoride 0.044g/L, Potassium fluoride 0.62 g/L, Sodium chloride 5.85 g/L, Magnesium chloride 0.14 g/L, Calcium chloride 0.16 g/L, Sodium benzoate 5.0 g/L, Carboxymethylcellulose 5.0 g/L in 1000 mL distilled water, pH 7.0) during a week until start the surface roughness and microhardness tests.

Specimens from CP10 performed home bleaching with 10% carbamide peroxide (Whiteness Perfect 10%, FGM Dental products, Joinville, SC, Brazil). Custom trays were fabricated for each specimen using a 1-mm thick acetate plaque (FGM Dental products, Joinville, SC, Brazil) and a vacuum-formed process (Plastvac P7, Bioart, São Carlos, SP, Brazil). Bleaching agent was maintained in contact with specimen surface 4h/day during two weeks. After each time of application, bleaching gel was removed with air water spray for 30 s, cleaned, polished with felt discs, and polishing paste. The specimens were stored in artificial saliva at 37°C until next application.

The MAB+CP10 group performed both treatment techniques. However, home bleaching starts a week after the end of enamel microabrasion. The application of microabrasive paste with phosphoric acid and ultrafine pumice was performed during 10 seconds and repeated 12 times in a single treatment session; then the specimens were rinsed, polished with felt discs and diamond paste and stored in artificial saliva solution at 37°C for a week with daily exchanges. One week, after this procedure the bleaching treatment was performed with 10% carbamide peroxide during two weeks. At the end of the treatment protocols, specimens were stored in artificial saliva at 37°C during a week until beginning experimental tests. Three bleaching agent tubes and the phosphoric acid and pumice used in this study were randomly chosen for pH measurements with a digital pHmeter (Hanna Instruments, Woonsocket, RI, USA) (Table 1). Product specifications are listed in Table 2.

Table 1: Means and standard deviations for pH of different treatment groups.

<table>
<thead>
<tr>
<th>Product</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Carbamide peroxide</td>
<td>5.82 (0.03)A</td>
</tr>
<tr>
<td>37% Phosphoric acid</td>
<td>-0.74 (0.03)B</td>
</tr>
<tr>
<td>37% Phosphoric acid + Pumice</td>
<td>-0.07 (0.07)B</td>
</tr>
</tbody>
</table>

Note: *Different uppercase letters in the same column represent significant difference between treatment groups (p< 0.05).

Table 2: Composition and manufacturers.

<table>
<thead>
<tr>
<th>Product</th>
<th>Composition</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condac 37%</td>
<td>37% Phosphoric acid, thickener, pigment and deionized water</td>
<td>FGM Dental products, Joinville, SC, Brazil</td>
</tr>
<tr>
<td>Extra fine Pumice</td>
<td>Pumice</td>
<td>SSWhite, São Cristovão, RJ, Brazil</td>
</tr>
<tr>
<td>Whiteness Perfect 10%</td>
<td>10% Carbamide peroxide, neutralized carbol, glycol and deionized water</td>
<td>FGM Dental products, Joinville, SC, Brazil</td>
</tr>
<tr>
<td>Diamond Excel</td>
<td>Micronized diamond (2-4µm), lubricant base, thickener and emulsifier</td>
<td>FGM Dental products, Joinville, SC, Brazil</td>
</tr>
</tbody>
</table>
Surface Roughness Test

Surface Roughness (Ra) was measured using a profilometer (SJ 301 Mitutoyo, Kanagawa, Japan). Before starting the measurements, the profilometer was calibrated in a reference block (2.94 ± 0.10 µm). For each specimen, three measurements in different directions (0h, 3h and 6h) were performed with a cutoff value of 0.25 mm and speed of 0.5 mm/s. The measurements were performed before and after treatments, obtaining the initial (Ra1) and final (Ra2) roughness means for each specimen.

Microhardness Tests

Microhardness measurements were performed with a Knoop diamond under a load of 50 g for 10 s using a microhardness tester (HMV-2, Shimadzu, Tokyo, Japan) before (T0) and after (T1) each treatment protocol. The distance from the first indentation to enamel block edge was approximately 500 µm. Three indents were made on the enamel surface of each specimen at intervals of approximately 300 µm in a parallel direction and, means were transformed in Knoop Hardness Number (KHN).

Surface Morphology Analysis

Eight specimens were separated from Scanning Electron Microscope (SEM) analysis (JEOL-JSM 5600LV, Tokyo, Japan): two non-treated specimens and two from each treatment group. After gradual dehydration with ethanol (25%, 50% and 75% for 20 minutes; 95% for 30 minutes and 100% for 60 minutes), each specimen was mounted on an aluminium stub, sputter-coated with gold-palladium (BAL-TEC SCD 050, Balzers, Fürstentum, Liechtenstein) and photomicrographs of representative areas were taken at 2.000X magnifications.

Statistical Analysis

Data were statistically analyzed by paired T-test for comparison within the same treatment group and by the one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test for comparisons between independent groups to determine significant differences in the different periods of evaluation regarding enamel roughness surface, microhardness, and pH. Differences were considered statistically significant when \(p < 0.05 \).

RESULTS

Surface Roughness, Microhardness and pH assessments

The mean values for surface roughness are shown in Table 3. All treatment groups showed an increase in the enamel surface roughness after treatment protocols employed (\(p < 0.03 \)). However, there were no significant differences for roughness between groups at baseline and one week after treatment (\(p > 0.05 \)).

At baseline, there were no significant differences for means of microhardness between groups (\(p > 0.05 \)). One week after treatment, while MAB and MAB+CP10 shown an increase of enamel microhardness (\(p < 0.04 \)), it was observed a decrease of microhardness for CP10 (\(p = 0.001 \)). Additionally, one week after treatment the values for microhardness were significantly higher from MAB and MAB+CP10 than CP10 (\(p < 0.05 \)) (Table 4).

The means values for pH are shown in Table 1. All materials tested showed low pH and, the pH values were significantly lower from 37% phosphoric acid and the paste of 37% phosphoric acid with pumice than CP10 (\(p < 0.05 \)).

Scanning Electron Microscopy

SEM images demonstrated different conditioning patterns of enamel surface. The enamel surface of the control samples appeared smooth in general, with some scattered clear scrapes due to the polishing procedure (Figure 1). Groups MAB and MAB+CP10 showed a smoother enamel surface, where prism endings were more (MAB) or less (MAB+CP10) evident (Figures 2 and 3). Bleaching with CP10 resulted an irregular pattern of enamel erosion, which resemble a type I acid-etching pattern (Figure 4).

Table 3: Mean and standard deviations of surface roughness (µm).

<table>
<thead>
<tr>
<th>Treatment Group (n= 12)</th>
<th>Surface Roughness</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>After treatment</td>
<td>(p) within group</td>
<td></td>
</tr>
<tr>
<td>I- Microabrasion</td>
<td>0.14 (0.03)(^A)</td>
<td>0.19 (0.07)(^A)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>II- Home bleaching</td>
<td>0.13 (0.02)(^A)</td>
<td>0.18 (0.05)(^A)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>III- Associated techniques</td>
<td>0.12 (0.03)(^A)</td>
<td>0.15 (0.04)(^A)</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

\(^A\) Different uppercase letters in the same column represent significant difference between treatment groups (\(p < 0.05 \)).
Table 4: Mean and standard deviations of microhardness (KHN).

<table>
<thead>
<tr>
<th>Treatment Group (n= 12)</th>
<th>Microhardness Baseline</th>
<th>Microhardness After treatment</th>
<th>p within group</th>
</tr>
</thead>
<tbody>
<tr>
<td>I- Microabrasion</td>
<td>274.5 (43.6)A</td>
<td>337.5 (28.1)A</td>
<td>0.002</td>
</tr>
<tr>
<td>II- Home bleaching</td>
<td>267.0 (49.7)A</td>
<td>166.3 (51.1)B</td>
<td>0.001</td>
</tr>
<tr>
<td>III- Associated techniques</td>
<td>270.8 (66.8)A</td>
<td>328.8 (21.6)A</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: *Different uppercase letters in the same column represent significant difference between treatment groups (p< 0.05).

DISCUSSION

Microabrasive procedures are considered conservative options for treating dental fluorosis, removing a thin layer of the enamel surface.6,11,12,20 A microabrasive paste with 37% phosphoric acid and pumice has become a popular procedure due to its low cost, availability in dental offices, and lower aggressiveness compared to hydrochloric acid.11,12 Studies have reported that this paste is effective in reducing fluorosis stains with minimal dental structure damage.20-22 However, once that microabrasion removes enamel structure, causing teeth to become yellowish, the association of this technique with tooth bleaching is indicated to promote uniformity of teeth color.22 A randomized clinical trial that evaluated the acceptability and efficacy of two treatment protocols for dental fluorosis reported that both
microabrasion (37% phosphoric acid and pumice) or the association of this technique with home bleaching (10% carbamide peroxide) were effective in reducing fluorosis stains, but in the associated technique the patients reported a major satisfaction with dental appearance.6

All treatment protocols performed in this study resulted in increase of enamel surface roughness.11,12,23 The increase of roughness after microabrasion with phosphoric acid and pumice may be associated to the selective pattern of conditioning induced by the acid, which promotes a lower decalcification, leaving a surface more granular and irregular.12 The microabrasive paste application promotes the compaction of mineralized tissue inside the organic area of the enamel due to simultaneous action of abrasion and acid erosion over prims.10 Additionally, studies reported that some materials used for polishing the enamel as silicone tip (40µm) or aluminum oxide discs (14 µm-5 µm) reduce the surface roughness that was previously increased by microabrasion and it may be associated to the type of microabrasive used.10,12,24 In this study, the use of 37% phosphoric acid with pumice promote a greater depth of demineralization and possibly the granulation of the diamond paste (2-4µm) used for polishing enamel was not able to reduce the extensive area demineralized by acid.

Studies have reported that bleaching gels with low concentrations of carbamide peroxide caused a significant increase in enamel surface roughness.13,25,26 One reason for this may be the increasing of contact time of low concentrated bleaching gels with tooth surface, which promoted surface changes in concentration of ions calcium and phosphate, degradation of organic matrix, erosion, porosities, and depressions.25,27 The gel used in this study was maintained in contact with enamel surface 4 hours/day during two weeks. Additionally, the gel contains carbopol as thickening agent which has been suggested that can also adversely affect dental enamel.25 Other studies did not detect alterations in the enamel surface roughness after treatments with 10% carbamide or 3.6%, 7.5% and 38% hydrogen peroxide.17,28-30 A study that evaluated the effects of 7.5 and 13.5% hydrogen peroxide (HP) and 35% carbamide peroxide (CP) on the enamel surface reported that the exposition to an acidic CP bleaching agent (pH= 4.9) resulted in higher surface roughness compared to a mild (pH= 6.1) or alkaline (pH= 10.8) HP bleaching agents.26 Furthermore, the topical application of fluoride on the enamel surface after bleaching with 35% HP prevented the increase of tooth enamel roughness.31

Groups treated with microabrasion or the associated technique with home bleaching showed an increase of enamel microhardness. The superficial abrasion of enamel after microabrasive treatments causes compression of mineralized tissue within the organic region’s of enamel, replacing the outer region free of prisms. Thus, the acidic and abrasive action of microabrasive compound probably modify the enamel prismatic structures, allowing the compressed mineral products to stay on the periphery, promoting the increase of microhardness.23 Additionally, after microabrasive procedure, specimens were polished with felt discs and diamond paste and, studies reported that the increasing of microhardness after polishing occurs due to the compation of micronized diamond present in the diamond paste.10,23 These findings are in agreement with our SEM data, where we could observe an enamel surface with a smoother and dense aspect after enamel microabrasion or with the associated technique. However, studies reported that topical application of fluoride after bleaching or microabrasive procedures can promote remineralisation due to calcium-phosphate precipitation inside the porous enamel and increase the enamel hardness.12,21,32

The group treated with 10% carbamide peroxide showed a decrease of enamel microhardness. Several aspects related to bleaching agents might influence the enamel surface microhardness, such as peroxide concentration, time of application, pH or the incorporation of fluoride in bleaching agents.25,32-35 The bleaching agent used has a pH of 5.8 and this pH could not have contributed significantly to enamel demineralization. One possible factor that may have contributed to the reduction of enamel microhardness was the contact time of fluoride free bleaching gel with enamel surface which may have disrupted the balance between demineralization caused by the bleaching agent and the remineralization caused by artificial saliva.27,33,34 These findings are in agreement with our SEM analyses, where was observed an irregular surface with depressions, porosity, and increased depth of enamel grooves.13 Other studies also observed these alterations and the enamel microhardness decrease when low carbamide peroxide (10 or 15%) concentrations were used for long treatment times.25,27,33,34 Additionally, the in situ effects of low concentrated bleaching agents on human enamel surface demonstrated no morphologic or chemical changes. This may be attributed to the protective effects of saliva, which provided dilution, buffering capacity, and supply Ca and P ions for tooth remineralization.12,30 However, when the specimens were stored in artificial saliva after bleaching with 38% hydrogen peroxide, the remineralization was not sufficient to restore tooth enamel microhardness.17

Within the clinical significance of this study was the evidence that the enamel microhardness and surface roughness were altered when protocols for treat dental...
fluorosis were used. Thus, it is necessary to performed further in vitro or in situ studies using teeth with dental fluorosis in order to compare the surface properties of fluorotic enamel after microabrasive procedures. Addicitonaly, randomized clinical trials are necessary to compare the efficacy, safety and the remineralization effect of human saliva in the techniques available for dental fluorosis treatment.

CONCLUSIONS

Within the limitations of this in vitro study, it was concluded that the treatment protocols for dental fluorosis tested significantly changed the enamel roughness, microhardness and micromorphology.

REFERENCES

21. Celik EU, Yıldız G, Yazkan B. Comparison of enamel...