SKELETAL CLASS III MALOCCLUSION IN CONJUNCTION WITH EARLY CHILDHOOD CARIES INCREASES ORTHODONTIC TREATMENT COMPLEXITY: A CASE REPORT

José Valldares-Neto¹*, Cristiane Barbosa dos Santos¹, Breno Soares Arruda¹, Ilda Machado Fiuza Gonçalves¹

¹School of Dentistry, Universidade Federal de Goiás, Goiânia, GO, Brazil

RESUMO

Keywords: Angle Class III Malocclusion. Dental Caries. Index of Orthodontic Orthodontic Treatment Need.

ABSTRACT

Introduction: Many objective indexes of orthodontic treatment complexity and need have been compiled over the years, most of which have been based on the morphological characteristics of malocclusion. Objective: The aim of this paper is to report a clinical strategy for treating multiple early childhood caries in conjunction with skeletal Class III malocclusion. Case report: A 5-year-old female patient sought dental treatment complaining of dental caries, pain, and malocclusion. The treatment plan involved three steps: pain alleviation, carious control and restoration, and, an orthodontic-orthopedic approach. Treatment also involved a behavioral change in eating habits of the family unit preceding the treatment of malocclusion. Results: The complex clinical cases can yield satisfactory outcomes when pediatric dentistry and orthodontic disciplines are integrated. Conclusion: Orthodontic treatment complexity in children should also be determined by remaining craniofacial growth and both patient and parent’s adhesion and compliance.

INTRODUCTION

Many objective indexes of orthodontic treatment complexity have been created over the years. Most have been based on the morphological characteristics of malocclusion, which include skeletal discrepancy, and are used to identify the orthodontic treatment needed, severity of malocclusion, difficulties in treating, and treatment outcome.¹ However, early orthodontic treatment can also be influenced by other parameters, such as patient compliance, remaining craniofacial growth, and other types of oral health impairment.²

Interceptive Class III malocclusion treatment is always challenging because of the doubtful
prognosis. A treatment choice for 5 to 9-year-olds is the facemask with or without maxillary expansion, which improves overjet with limited influence on sagittal skeletal components, but without much long-term evidence. Treatment outcomes depend on the magnitude and direction of remaining craniofacial growth. Severe cases with a clear family history may culminate in the need for orthognathic surgery after cessation of craniofacial growth, even with early orthopedic treatment.

In addition, malocclusion in children may present simultaneously with other types of oral health impairment, such as early childhood caries, toothache and dental loss. In Brazil, the prevalence of early childhood caries is 46% among two to three-year olds, but can affect children of any ethnicity. Ocurrence is associated to low income households, little schooling, and larger families. In such cases, preventive treatment is neglected and curative treatment is sought by the caregiver when a child feels pain or if carious lesions are perceived.

It seems reasonable to assume that orthodontic treatment complexity increases in children when associated to multiple carious lesions. The aim of this case report was to present a clinical strategy for treating multiple early childhood caries in conjunction with skeletal Class III malocclusion. The CARE case report guidelines were followed.

CASE REPORT

Patient information

A 5-year-old female patient was brought to the Children’s Clinic at the Federal University of Goiás School of Dentistry, by her parents, complaining mainly of dental caries and pain. She had previously been treated by mass excavation and had temporary restorations of glass ionomer cement but did not continue with her treatment. This time, she came back complaining of odontogenic pain of intensity 2, according to the FPS-R scale, lasting more than a month. The anamnesis showed that the child did not have supervised brushing and consumed excessive sugar. She had been breastfed exclusively in her first year of life.

Clinical and radiographic findings

The facial profile was concave in a hypodivergent pattern, but with facial thirds unbalanced due to lower third reduction. The lips were passively sealed and the smile-line was low, with marked short maxillary incisor exposition. Initial cephalometric data showed the presence of Class III skeletal malocclusion due to maxillary deficiency, a finding compatible with the facial analysis. In terms of dentition development, she was at the initial mixed dentition stage (eruption of 26, 36, and 46). Her occlusal situation was characterized as Class I, based on the canine relationship with complete anterior crossbite and 50% overbite. The right permanent first molars (16 and 46) were in crossbite probably because of a mild maxillary atresia. An intraoral examination detected the presence of multiple temporary restorations which needed replacing (teeth 51, 52, 53, 54, 61, 62, 63, 64, 65, 74 and 84), and absence of teeth (75 and 85) (Figures 1).

Diagnostic assessment

The patient presented a Class III skeletal pattern due to combination of maxillary retrognathism and mandibular prognathism, resulting in a concave facial profile (ANB= -1.5 degrees, Witts= -6.0 mm, SNA= 80.0 degrees, SNB= 81.5 degrees, NAP= -3.0 degrees). Maxillary involvement was also detected in the transversal and vertical dimensions, respectively, due to maxillary atresia and decreased lower facial height with a short smile (SN.GoGn= 29.0 degrees). The functional examination of the occlusion was performed and it was confirmed that there was no functional anterior mandibular shift. The canine sagittal relationship was in Class I and the incisal overjet was negative with anterior crossbite of the four upper incisors. The child also presented with an early loss of lower second primary molars (teeth 75 and 85), multiple temporary restorations and dental caries, pain, and poor oral hygiene.

Figure 1: Pre-treatment photographs.
Therapeutic intervention

The treatment plan was based on three steps: 1- Pain alleviation by eliminating the foci of infection, 2- Carious control and restaurauration, and 3- Orthodontic-orthopedic treatment. For this purpose, a psychological behavioral conditioning of the patient was undertaken. The first procedures involved oral hygiene instruction and a change in eating habits, extraction (tooth 82), endodontic treatment (tooth 63), dental restorations with composites (teeth 63, 53, 55) and ionomer sealant (tooth 65). During dental restorations, several teeth exfoliated (teeth 51, 52, 61, 62).

After oral health was reestablished, the orthodontic planning involved the use of fixed space maintenance in the edentulous region (teeth 75 and 85), and maxillary atresia and Class III correction through a modified Haas expander followed by a Petit face mask for reverse traction.

Follow-up and outcome

The integrated treatment was performed as planned. With the treatment of carious lesions and the exchange of provisional restorations, bacterial plaque retention sites and infection foci were eliminated, and the oral environment was allowed to adjust. Endodontic (tooth 63) and extraction (tooth 82) treatments led to the relief of pain.

After behavioral and oral health preparation, orthodontic treatment was started. The first orthodontic step was to correct the maxillary atresia by inserting a modified Haas type expander in the second molars and canines. The caregiver was given instruction on the expander activation protocol which consisted of a 1/4 turn twice a day until overcorrection was reached. This process took 2 weeks. The upper dental arch was expanded in intercanine and second molar distances by 4 mm and 5 mm, respectively. During the retention, a Petit type face mask was inserted with medium ½ elastics retained on the expander hook near the maxillary canines with 400g force application on each side. The face mask was recommended for daily use at home (Figure 2). The patient received follow-up monthly treatment for 9 months until the bite was uncrossed. Exodontia of the upper deciduous canines was performed after removal of the expander to allow adequate alignment of the upper lateral incisors (12 and 22).

Figure 2: Orthodontic-orthopedic treatment performed with modified Haas type expander and Petit facial mask.

Figure 3: Follow-up photographs.
Class III malocclusion with early childhood caries. Valldares-Neto et al.

The post treatment short-term results showed a significant improvement in oral health, occlusal relations and facial profile. Greater forward lip projection and increased upper lip vermilion exposure contributed to face harmonization and enhanced the child's self-esteem. Figures 3 and 4 show the clinical and radiographic improvement after treatment and follow-up (final cephalometric data: ANB= 3.0 degrees, Witts= -1.5 mm, SNA= 81.5 degrees, SNB= 78.5 degrees, SN.GoGn= 31.5 degrees, NAP= 1.0 degree).

DISCUSSION

Complex cases in children’s dental clinics require close interdisciplinary integration for strategic clinical decision-making. The term “complexity” in orthodontics should be understood as the amount of effort or skill needed to obtain a successful outcome at the end of treatment and maintain it long-term. This article reports a complex case involving a 5-year-old with multiple early childhood caries, pain, poor oral hygiene, and skeletal Class III malocclusion. Orthodontic-orthopedic intervention was recommended with caution because of an unfavorable overall prognosis. Indexes of orthodontic treatment complexity should be based on orthodontic elements, such as severity of the skeletal discrepancy and the unfavorable remaining facial growth, but should also include impaired oral health, such as tooth loss and multiple dental caries disease. In addition, treatment complexity should also be modulated by psychosocial and cultural factors, because treatment goals depend on both patient and parent’s adhesion and compliance. Therefore, the concept of orthodontic treatment complexity in children should also include holistic parameters.

Carious disease in both generalized and advanced stages, and severe malocclusion, separately, can compromise a child’s quality of life and could result in their undermining pain; speech, eating and sleep disorders; general suffering; and bullying. Integration of the specialist teams involved in child dental care is essential for successful treatment, as is education of the family unit. Integrated treatments must systematize a rational sequence of intervention. Treatment efforts must at first concentrate on pain alleviation, and then on carious control. The multifactorial etiology of dental caries goes beyond isolated curative treatment as it requires the involvement of the family in incorporating and maintaining new eating habits. This must be particularly stressed in terms of dietary control, and such preventive attitudes should be maintained for at least the first five years of life. It is well known that dental biofilm one of the factors which triggers the development of caries, and the demineralization phenomenon is maximized when dietary sugar is recurrent. In the case reported, a survey of eating habits showed a diet rich in sugar and carbohydrate consumed at irregular intervals. In addition, the child was in the habit of getting a feeding bottle at night until she was three. The fact that the child took care of her own oral hygiene by herself, without parental supervision, was another aggravating factor. In this age bracket, motor coordination is vital for efficient brushing and cleaning with dental floss.

Preparation of the buccal environment can be grouped into several clinical procedures which aim to revert and control carious activity before definitive restoration and, as in the case reported, before embarking on an orthodontic-orthopedic approach. Its purpose is to quantitatively and qualitatively control buccal microorganisms, and lead to the remineralization by changing oral pH. Initial procedures could include the use of diary reporting of the diet every 3 days, daily mechanical control of biofilm by the patient assisted by parents which includes nightly brushing, using fluoride toothpaste and varnish, and restricting the consumption of cariogenic foods. After this preparation, the superficial part of the caries lesion (infected dentin) should be removed, in a procedure called mass excavation. The tissue removed is rich in denatured collagen and microorganisms abound, whereas in the deeper layer (affected dentin), the collagen is intact and there is a lesser concentration of microorganisms and greater potential for remineralization.

Many objective indexes of orthodontic treatment complexity have been compiled over the years, most of which have been based on the morphological characteristics of malocclusion. Normally, pre-treatment dental casts and cephalometric data are used to classify the orthodontic treatment need and complexity. However, this simplistic concept should not be applied alone to orthodontic-orthopedic treatment of children.
The case reported showed cephalometric data and facial characteristics compatible with a skeletal Class III pattern, even with a Class I canine relationship. It is recommended that interceptive skeletal Class III malocclusion be treated using an orthopedic approach during the deciduous or mixed dentition stage, that is, before the pubertal growth spurt. More recently, skeletal anchorage has been considered an alternative for patients after lower canine eruption or in early permanent dentition at the latest. Inserting the T-spring was an additional feature used to promote correction of excessive uprightness in the upper incisors and accelerate correction of negative overjet, although the effect was exclusively orthodontic and could also be derived from reverse traction.

Since posttreatment growth cannot be determined in advance, overcorrection of the horizontal overjet and the maintenance of the containment for an adequate period is essential. This should be clarified to the parents and the patient from the outset so that they are properly informed and invited to cooperate with the treatment.

CONCLUSION

Complex clinical cases can attain satisfactory outcomes by integrating pediatric dentistry and orthodontic disciplines. Behavioral changes in the family diet were essential in attaining the immediate goals and improving oral-health-related quality of life. Various factors, such as the severity of the malocclusion, oral health impairment, patient compliance, psychosocial and cultural factors and others can influence orthodontic treatment complexity in children, because treatment goals depend on both patient and parent’s adhesion.

Informed consent

Informed consent was obtained from the parents in this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

REFERENCES

